Core

Maths

Correlation and Regression
Revision notes

Are things connected?

Scatter graphs are very useful to look for correlation.
This one has a strong positive correlation with two outliers circled.

We measure correlation with a coefficient. These are all names for the same thing:

- Correlation Coefficient

- Product Moment Correlation Coefficient

- r

The correlation coefficient, r, can be between -1 and 1 The words below are a rough guide.
inear Correlation
Linear Correlation
This course only looks at

Correlation does not imply causation.

 Just because things are correlated, doesn't necessarily mean one causes the other to happenPositive correlation As one value increases, the other increases Negative correlation As one value increases, the other decreases

Outliers

Can have a big impact on your value of r. Treat them carefully!

Using a line of best fit to make predictions

If the correlation is strong, then a regression line can be used to make predictions.

Regression line is the phrase for the correct line of best fit It might be written as "the regression line of y on x "

$$
y=a+b x
$$

Useful fact:
The regression line goes
through the point

$$
(\bar{x}, \bar{y})
$$

a is the intercept
b is the gradient
You need to be able to interpret the values of a and b in the context of the question.
a is what happens when $x=0$.
Look for what that would mean in the question you're looking at. b is the gradient. It tells you how quickly the y values are changing. You can interpret it with this customisable phrase:
"For every one extra [x thing], the [y thing] [increases/decreases] by [b]."
The variables might not be x and y. Just replace them with whatever is used in the question.

The values of r, a and b can all be found directly from your calculator Exactly how depends on your make of calculator so you must find out how to do it.

Google "correlation on [your calculator model]"

